Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Snow Water Equivalent dataset contains information about snow water equivalent (SWE), temperature, precipitation, wind speed, relative humidity, and related climate variables across different locations and time periods. It includes daily observations and derived variables for hydrological and climate analysis. An additional column, source, specifies the origin of each data column.more » « less
- 
            Abstract Plasmon polaritons, or plasmons, are coupled oscillations of electrons and electromagnetic fields that can confine the latter into deeply subwavelength scales, enabling novel polaritonic devices. While plasmons have been extensively studied in normal metals or semimetals, they remain largely unexplored in correlated materials. In this paper, we report infrared (IR) nano-imaging of thin flakes of CsV3Sb5, a prototypical layered Kagome metal. We observe propagating plasmon waves in real-space with wavelengths tunable by the flake thickness. From their frequency-momentum dispersion, we infer the out-of-plane dielectric function$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ that is generally difficult to obtain in conventional far-field optics, and elucidate signatures of electronic correlations when compared to density functional theory (DFT). We propose correlation effects might have switched the real part of$${{{{{{\boldsymbol{\epsilon }}}}}}}_{{{{{{\boldsymbol{c}}}}}}}$$ from negative to positive values over a wide range of middle-IR frequencies, transforming the surface plasmons into hyperbolic bulk plasmons, and have dramatically suppressed their dissipation.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis. Materials and Methods: In this retrospective study, we evaluated our proposed method on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes supervised contrastive learning with carefully selected positive and negative samples to generate fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray (CXR) diagnosis. We evaluated the methods using the marginal AUC difference (δ mAUC). Results: The proposed model showed a significant decrease in bias across all subgroups when compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The δ mAUC obtained by our method were 0.0116 (95\% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118), and 0.1000 (95\% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95\% CI, 0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively. Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods.more » « less
- 
            Rotating machines, such as pumps and compressors, are critical components in refineries and chemical plants used to transport fluids between processing units. Bearings are often the critical parts of rotating machinery, and their failure could result in economic loss and/or safety issues. Therefore, estimation of the remaining useful life (RUL) of a bearing plays an important role in reducing production losses and avoiding machine damage. Because bearing failure mechanisms tend to be complex and stochastic, data-driven RUL estimation approaches have found more applications. This work proposes a novel RUL estimation method based on systematic feature engineering and extreme learning machine (ELM). The PRONOSTIA dataset is used to demonstrate the effectiveness of the proposed method.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available